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ABSTRACT: Quantitative precipitation forecast (QPF) applications often demand accumulations of precipitation for
both long- and short-duration time intervals. It is desired that the shorter-duration forecasts sum to the longer-duration
accumulations spanning the same time period. In the context of calibration, it is further desired that both the subinterval
and longer interval accumulations be similarly corrected to have near unit frequency bias on a spatial domain. This study
examines two methods of achieving these goals for 6- and 24-h accumulation intervals: 1) the accumulation method bias
corrects the 6-h forecasts and accumulates them to create the 24-h accumulations; and 2) the disaggregation method bias
corrects the 24-h accumulation and then proportionately disaggregates the 24-h accumulation back into 6-h accumulations.
The experiments for the study are done retrospectively so that a “perfect” bias correction is possible for each method. The
results of the study show that neither method accomplishes the stated goal for the calibration because QPF placement and/
or timing errors contribute to frequency bias in the course of accumulation or disaggregation. However, both methods can
improve the frequency bias for both the subinterval and longer interval accumulations. The choice of method may hinge
most strongly on the relative tolerance of bias for the subinterval accumulations versus the longer interval accumulation.
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1. Introduction

The weather forecast user community still demands deter-
ministic quantitative precipitation forecasts (QPFs) even as
ensemble prediction systems (EPSs) offer increasingly reli-
able probabilistic forecasts. Deterministic QPFs are often pre-
pared and used over different accumulation time intervals.
For example, forecasters at the National Weather Service
(NWS) Weather Prediction Center (WPC) create grids of 6-h
duration QPF for lead times of up to 7 days. However, the
users of WPC’s QPF guidance may accumulate or disaggre-
gate the original 6-h duration QPF depending on the applica-
tion. NWS Weather Forecast Offices (WFOs) may use WPC’s
6-h QPF directly to prepare the National Digital Forecast
Database (NDFD; Glahn and Ruth 2003) and disaggregate
WPC’s QPF into shorter time intervals for other products.
NWS River Forecast Centers (RFC) may select a variable
time accumulation interval to drive their streamflow models
depending on the synoptic situation (Fread et al. 1995). Like-
wise government agencies such the Federal Emergency Man-
agement Agency (FEMA) may be interested in multiday
QPF accumulations in the event of a landfalling tropical
cyclone in order to communicate the storm total precipitation
forecast. Regardless of the operation performed, it is desir-
able that both the original and derived accumulations repre-
sent plausible forecasts.

When preparing QPFs, forecasters often rely on post proc-
essed and statistically calibrated numerical weather prediction
(NWP) output. Potential QPF calibration methods range
from relatively simple approaches based on past forecast

error (e.g., Beck et al. 2016; Mass et al. 2008) to much more
complex methods. In their introduction, Bakhshaii and Stull
(2009) list many methods of bias correction ranging from lin-
ear regression to fuzzy logic before discussing gene-expression
programming, the one selected for their work.

Quantile mapping (QM; a.k.a. frequency matching) is a rela-
tively simple and effective calibration approach now com-
monly used in both regional climate modeling (e.g., Reiter
et al. 2018; Chen et al. 2013) and short- and medium-range
weather forecasting (e.g., Hamill et al. 2017; Zhu and Luo
2015). With QM, forecast values are modified so that the fre-
quency distribution of the forecasts matches that of the obser-
vations in the temporal domain. When calibrating NWP-based
QPF, the QM method uses a historical training dataset of
matched QPF and quantitative precipitation estimate (QPE)
values at grid points to correct a current QPF in the manner
described concisely by Hamill et al. (2017, p. 3443). In practice,
QM may use either parametric or empirical (nonparametric)
cumulative distribution functions (Reiter et al. 2018) to map
between the predicted and observed distributions.

Whatever the method of calibration, it is expected that the
bias of the corrected QPF (as measured by frequency bias,
the ratio of forecast event frequency to observed event fre-
quency) is improved compared to the raw QPF over a given
verification region. Since QPFs are required for different
accumulation intervals, there is a desire to have bias-corrected
subinterval QPFs that sum to a bias-corrected QPF over a
longer interval, such as 6-h accumulations summed to 24-h
accumulations. This work examines two different methods
that may be used to accomplish this goal for 6- and 24-h accu-
mulations, and shows how each method falls short of achiev-
ing the objective due to the effects of placement and timing
errors. Both methods are examined using an experimental
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approach applied retrospectively to deterministic QPFs and
EPS mean QPFs. In the experiments, both the forecasts and
the verifying analyses are available, so that the frequency bias
can be adjusted to unity over a specific spatial domain. The
spatial domain quantile mapping (SDQM) approach applied
here is described by Clark et al. (2009, p. 1134) and demon-
strated in a simple way by Pyle and Brill (2019) and in the
appendix. SDQM is a nonparametric application of QM,
whereby the order statistics1 for the quantile mapping are the
values at grid points covering the spatial domain. SDQM
changes the QPF values so that their frequency distribution
on the spatial domain exactly matches the frequency distribu-
tion of the verifying QPE analysis values. While such a perfect
bias correction is certainly not possible in any real-time fore-
casting process, doing so in the experiments eliminates any
question as to whether a better result would be obtained by
improving the bias correction in some way. Although the
SDQM bias correction is “perfect” (i.e., the frequency bias
becomes unity), it does not alter the QPF placement and
therefore is recommended in QPF verification to eliminate
the influence of bias on performance metrics for QPF exceed-
ing thresholds (Pyle and Brill 2019).

Two experiments, the accumulation experiment and the
disaggregation experiment, are described in this article. For
the accumulation experiment, 6-h QPFs are bias corrected on
the domain outlined in Fig. 1 and accumulated to create 24-h
QPFs that are verified on the same domain to ascertain the
extent to which the original perfect unit bias is retained. In
the disaggregation experiment, 24-h QPFs are bias corrected
and then disaggregated using the constituent raw 6-h QPFs to
obtain new 6-h QPFs that are verified to determine the extent
to which the perfect bias is preserved for the 6-h disaggre-
gated QPFs. Both experiments use the SDQM method of bias
removal. The results of these experiments are expected to be

of interest to operational forecasters who need to be aware of
how biases may creep into post processed QPFs, and model
post processor developers who must be mindful of the same
considerations. Researchers who make use of bias-corrected
simulated QPFs may find the information herein useful. These
results may also encourage the research community to investi-
gate more advanced statistical methodologies for post process-
ing model QPFs in the day 1–7 timeframe, taking inspiration
and knowledge from the extensive work already done by the
hydroclimatic community (e.g., Papalexiou et al. 2018; Poschlod
et al. 2018). To the authors’ knowledge, this is the first pub-
lished study to explore of the effects of accumulating and disag-
gregating bias-corrected QPF.

The remainder of the paper is organized as follows. Section 2
describes the source of deterministic and EPS mean QPFs and
the QPE analyses used for the bias correction and verification.
Section 3 discusses the accumulation experiment in detail and
presents the results. Section 4 describes and presents results for
the disaggregation experiment. A summary and conclusions are
given in section 5.

2. Data sources and verification methodology

The European Centre for Medium-Range Weather Forecasts
(ECMWF; https://www.ecmwf.int/en/forecasts/documentation-
and-support) provides the deterministic and EPS mean
(ECENS) QPFs for this work. By international agreement, the
ECMWF deterministic model forecasts are available to the U.S.
National Weather Service (NWS) National Centers for Envi-
ronmental Prediction (NCEP) on a global grid with quarter-
degree grid spacing. Similarly, the ECMWF ensemble forecasts
are available on a global grid with 0.58 grid spacing. WPC main-
tains a long-term archive of the 6-h QPF data from the
ECMWF deterministic model and the ECENS that have been
remapped to a grid with 20-km grid spacing covering the conter-
minous United States (CONUS) on a Lambert conformal pro-
jection (see Fig. 1). To leverage this existing dataset, we used
the 20-km remapped data for this study. The remapping
approximately preserves area averages and is built into the
GEMPAK software (https://www.unidata.ucar.edu/software/
gempak/package_information/) that is used for the data proc-
essing and graphics in this work. The forecast projection times
and valid date–time ranges used are given in the discussion of
each experiment.

The CONUS QPE analysis is the Stage IV analysis
described by Hou et al. (2014, p. 2544). The 4-km discretized
QPE analysis data are remapped to a CONUS grid with
20-km grid spacing using the GEMPAK software. The Stage
IV QPE covers the study domain outlined in Fig. 1. The QPE
analysis is utilized for both the bias correction and the
verification.

The verification applied in this study involves populating
2 3 2 contingency tables for dichotomous (yes/no) forecasts
as described by Wilks (2006, section 7.2.1). Table 1 along with
its caption describes the 2 3 2 contingency table. The 2 3 2
contingency table values may be accumulated over time
and space. In terms of values in Table 1, frequency bias is
(a 1 b)/(a 1 c). In the case of perfect unit frequency bias,

FIG. 1. The CONUS grid area is shown inside the rectangular
area. The irregularly shaped region outlined in red is the domain
used in the experiments.

1 Order statistics refers to data values that have been sorted
from lowest to highest value.
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b 5 c in Table 1, and, when such tables are combined, unit
frequency bias is preserved. See the appendix for specific
examples of populating 2 3 2 contingency tables.

Aside from frequency bias, the only performance metric
used in this study is the Gilbert skill score (GSS, a.k.a. the
equitable threat score; see Wilks 2006, p. 267). Assuming the
values in Table 1 have been normalized by the total data count
(a 1 b 1 c 1 d), then GSS5 a2 aref( )= a2 aref 1 b1 c( ),
where aref 5 (a 1 b)(a 1 c) which gives the value of a
expected for a random forecast. Many performance metrics
can be computed using 2 3 2 contingency table values, and all
are influenced by bias in such a way that worsening the bias
can yield an improved value of the metric (Brill 2009). As
explained and quantified by Brill (2009), regardless of the orig-
inal frequency bias, if the removal of “yes” forecasts to reduce
bias removes more false alarms than hits, then the GSS may
increase. Similarly, if the addition of “yes” forecasts to
increase bias adds more hits than false alarms, then the GSS
may increase. Frequency bias alone does not measure forecast
skill because it is not sensitive to hits.

For each comparison, the statistical significance of pairwise
differences in frequency bias or GSS is assessed using the
random resampling method described by Hamill (1999). The
95% confidence intervals for statistical significance (5% test
level) are displayed as barred line segments in the graphics.

Limiting the study region to the eastern two-thirds of the
CONUS (Fig. 1) is done for two reasons. First, the inclusion
of the mountainous west would skew the order statistics for
the SDQM due to the opposing seasonal regimes. In terms of
precipitation maximums, in winter the west is relatively wetter
and the east is relatively drier; in summer the opposite tends
to occur. Second, the simple accumulation of 2 3 2 contin-
gency table values over a spatial domain with too much varia-
tion in the event frequency should be avoided (Hamill and
Juras 2006). There is noticeable, but tolerable variation in
event frequency across the eastern two-thirds of the CONUS.
Including the western CONUS would certainly worsen the
effects described by Hamill and Juras (2006).

Another issue regarding QPF verification is mostly a matter
of perspective: Is the QPF error best described as a timing
error or a placement error? At a fixed point with the accumu-
lation of precipitation taken as a function of time, QPF errors
may appear as timing errors. At a fixed time with the accumu-
lation of precipitation viewed over an extended area, QPF
errors often may best be described as placement errors. In a
realistic spatial–temporal domain, both timing and placement

errors contribute to QPF error along with the error in the
magnitude itself. In this article, the two terms, “timing” and
“placement,” are used separately, interchangeably, or some-
times together depending on what seems most appropriate in the
immediate context. Generally, for the accumulation experiment
it may be best to think in terms of placement error, whereas, for
the disaggregation experiment, timing error may afford the better
perspective. However, simple errors in magnitude may be easily
mischaracterized as either placement or timing error.

3. The accumulation experiment

The accumulation experiment is designed to address the
following question: If one could perfectly bias correct 6-h
QPFs on a given domain, what are the characteristics of the
bias for the accumulated 24-h QPFs? The experimental pro-
cess is described algorithmically as the sequence of steps out-
lined below:

1) Gather four 6-h QPFs from an archive of past forecasts
on the 20-km grid.

2) Gather the four verifying 6-h QPE analyses and remap
them to the 20-km grid.

3) Apply SDQM over an eastern CONUS domain (Fig. 1) to
create four perfectly bias-corrected 6-h QPFs.

4) Accumulate the raw biased 6-h QPFs to create a 24-h
QPF also having bias.

5) Accumulate the perfectly bias-corrected 6-h QPFs from
step 3 to get a potentially bias-corrected 24-h QPF.

6) Accumulate the 6-h QPE analyses to obtain a 24-h QPE
analysis for verification.

7) Verify the two 24-h QPFs (one from the accumulation
of the raw 6-h QPFs and the other from the accumula-
tion of the perfectly bias-corrected 6-h QPFs) to create
2 3 2 contingency tables for QPF exceeding a series of
thresholds.

8) Compare the frequency biases of the original raw 24-h
QPFs with the biases of the potentially bias-corrected
24-h QPFs formed by accumulating the perfectly bias-
corrected 6-h QPFs.

The accumulation experiment was carried out for both the
ECMWF deterministic QPFs and ensemble mean QPFs accu-
mulated over three 24-h periods ending at the 48-, 120-, and
144-h projection times from the 1200 UTC initial cycle time.
The constituent 6-h QPF accumulation periods end at projec-
tion times 18, 12, 6, and 0 h before the end of the 24-h periods.
With automation of the processing, the experiment ran daily
for more than one year, beginning on 2 April 2019. For brev-
ity, only samples from this dataset are presented here. To
capture seasonal extremes, the verification statistics are cumu-
lative over the 2019 warm season [June–July–August (JJA)]
and the 2019/20 cold season [December–January–February
(DJF)]. The fall and spring seasons (not shown) were also
examined and found to exhibit patterns of behavior similar to
JJA and DJF with results falling midway between the two
opposing seasons. Accumulation of the 2 3 2 contingency
table statistics over multiple seasons having different event
frequencies is not recommended (Hamill and Juras 2006).

TABLE 1. Typical 2 3 2 contingency table of accumulated
counts or frequencies (a, b, c, d) for observed and forecast
accumulated precipitation exceeding or not exceeding some
specified threshold Q.

Outcomes
Observation $

Q (yes)
Observation ,

Q (no)

Forecast $ Q (yes) a b
Forecast , Q (no) c d
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Although the GSS and frequency bias generally decrease with
increasing lead time, the pattern of the graphical results are
qualitatively similar across projection times leading to the
same conclusions; therefore, only results for the 120-h fore-
casts are shown.

Figure 2a shows the results for the JJA 2019 warm season
for the ECMWF deterministic QPF accumulation experi-
ment. The red and blue pairs of color bars compare 24-h
QPF frequency biases for the raw versus the bias-corrected
sets of 6-h QPFs accumulated to the 24-h totals that are

being verified. The 24-h QPF accumulated from the raw 6-h
QPFs is overbiased at the two lowest thresholds whereas
the 24-h QPF accumulated from the bias-corrected QPFs is
close to unity. As thresholds increase, the raw QPF under-
bias is improved to near unity in the midrange of thresh-
olds. At the highest several thresholds the considerably
underbiased raw QPFs are corrected to become noticeably
overbiased, but only the 3.0-in. threshold exceeds 1.20.
Many of the changes in frequency bias due to the correction
are statistically significant at the 0.05 p level. Figure 2b

FIG. 2. JJA 2019 verification results for the 120-h 24-h QPFs from (a) the deterministic ECMWF and (b) the
ECENS mean. The first pair of red and blue color-filled bars at each abscissa point compares the biases (left axis) for
the raw vs bias-corrected 24-h accumulations of 6-h QPFs. The second pair of orange and green color-filled bars shows
the respective GSS (right axis) comparison. Barred line segments show the 95% confidence intervals for the pairwise
differences between the first and second color-filled bar of each pair. A confidence interval completely above or within
a color bar indicates a statistically significant difference. Threshold values (in.) are on the lower abscissa. The values
along the upper abscissa give the number of contributing grid points. Dashed bold witness lines for bias values of 0.80,
1.00, and 1.20 denote an interval of frequency bias close to unity. The inset box gives the statistical significance confi-
dence interval and random resampling information.
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depicts results for the JJA 2019 period for the ECENS
mean QPFs. The pattern of behavior for the red and blue
color bars in Fig. 2b is an amplified form of that found in
Fig. 2a.

In Figs. 2a and 2b, the orange and green color-filled bars
compare the GSS for the raw versus bias-corrected 24-h
QPFs. Except at the 0.10-, 0.25-, and 3.0-in. thresholds, the
bias correction improves the GSS, and, at most thresholds,
the improvements are statistically significant. The GSS is
sensitive to bias and will show improved performance if the
critical performance ratio condition described by Brill
(2009) is met. Thus, it is expected that the GSS would
increase if the frequency bias also increases. The sensitivity
of the GSS to placement error and the differences in GSS
between Figs. 2a and 2b provide information for under-
standing the amplification of the bias pattern seen in Fig. 2b
compared to Fig. 2a.

Before delving into a deeper explanation of the results in
Fig. 2, it is interesting to look at verification results for the
DJF 2019/20 cold season shown in Fig. 3. For the deterministic
QPFs (Fig. 3a), the frequency bias of the raw forecasts is
within the 0.8–1.2 range except for the underbiased two high-
est thresholds and the overbiased 0.01-in. threshold. The bias
correction produces statistically significant changes only at the
lowest four thresholds for which the raw QPFs are over-
biased. After the bias correction, all thresholds have fre-
quency bias values in between 0.8 and 1.2 in Fig. 3a. Figure 3b
shows the DJF results for the ECENS QPFs. Again, the gen-
eral pattern of the red and blue bars in Fig. 3b is amplified
compared to Fig. 3a. Overbias at low thresholds is signifi-
cantly reduced, and low bias at high thresholds is significantly
increased. At the highest threshold the underbias is too low to
register on the graph, but the corrected QPFs are overbiased
by almost a factor of 2.0 at the 3.0-in. threshold. However, it

FIG. 3. As in Fig. 2, but for DJF 2019/20 verification results.
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is notable that the frequency biases for the corrected QPFs
fall between 0.8 and 1.2 at all but the highest two thresholds
in Fig. 3b.

The relatively higher GSS values in Fig. 3 compared to
Fig. 2 support the well-known fact that precipitation accumu-
lation forecasts tend to have more skill in the cold season
compared to the warm season. In Fig. 3a, the bias correction
leads to improved GSS at all thresholds, but the improve-
ments are statistically significant only at the lowest two
thresholds. In Fig. 3b, the GSS is significantly improved at the
two lowest and the two highest thresholds. The bias correc-
tion slightly degrades the GSS at the 0.25- and 0.50-in. thresh-
olds with the degradation at the 0.25-in. threshold being
nearly statistically significant.

Figures 2 and 3 support three important points: 1) Accumu-
lating perfectly bias-corrected 6-h QPFs to 24-h totals does
not result in perfectly bias-corrected 24-h QPFs. 2) The over-
bias for the 24-h accumulations from bias-corrected 6-h QPFs
at higher thresholds is much more pronounced for the ensem-
ble mean than for the deterministic QPF. This effect is more
noticeable in the convection dominated warm season (Fig. 2,
JJA) than in the stable precipitation dominated cold season
(Fig. 3, DJF). 3) Overbias at the lowest one or two thresholds
is overcorrected to an underbiased condition, especially for
the ECENS mean. For the last two points, less than perfect
GSS values for the constituent perfectly bias-corrected 6-h
QPFs (not shown) reflect the placement or timing errors that
come into play to influence the biases of the accumulated 24-h
QPFs.

To better understand the results described above, an ideal-
ized quantitative precipitation accumulation on a one-dimen-
sional spatial domain (x) for four 6-h periods accumulating to
a 24-h total is considered. This analysis is depicted graphically
in Figs. 4 and 5. In Fig. 4, continuous functions are used to
represent four 6-h accumulations on a one-dimensional spatial
domain (left column of Fig. 4) that are added to obtain a con-
tinuous 24-h accumulation on the same domain (right column
of Fig. 4). The raw 6-h QPFs in Fig. 4a are perfectly bias cor-
rected using the 6-h QPEs in Fig. 4c to yield the 6-h QPFs
shown in Fig. 4e. Figure 4e shows that the bias correction per-
fectly adjusts the accumulation amounts but cannot correct
the erroneous placement of the fourth 6-h QPF maximum in
the original forecast compared to the prescribed 6-h QPE in
Fig. 4c. The resulting accumulation of the four perfectly bias-
corrected 6-h QPFs thus produces an erroneously high-biased
24-h QPF (Fig. 4f).

Figure 5 shows two curves of frequency bias versus thresh-
old values. The red curve in Fig. 5 results from verifying
the raw 24-h QPF in Fig. 4b against the 24-h QPE shown in
Fig. 4d. The blue curve in Fig. 5 results from accumulating the
perfectly bias-corrected 6-h QPFs in Fig. 4e to create a 24-h
total (Fig. 4f), and verifying this total against the 24-h QPE in
Fig. 4d. The raw 24-h QPF accumulation is slightly overbiased
at lower thresholds and underbiased at higher thresholds in
Fig. 5. The opposite is true for the 24-h QPF created from the
6-h perfectly bias-corrected QPFs. Figures 4 and 5 show how
placement error can lead to excessive bias at the highest

thresholds for bias-corrected accumulated QPFs as is seen,
especially in Fig. 2b, for actual forecasts.

To further illustrate how accumulating bias-corrected 6-h
QPFs can produce an over biased 24-h QPF, a case study is
shown in Fig. 6 using ECENS model data from the accumula-
tion experiment. The results are for the 120-h forecast projec-
tion of the ECENS initialized at 1200 UTC 4 June 2020.
Figure 6a plots contours enclosing areas where the raw 6-h
QPF exceeds 0.5 in. for each of four sequential 6-h time
periods. Figure 6b shows the 0.5-in. contours for the corre-
sponding bias-corrected 6-h QPFs color coded as in Fig. 6a.
Figure 6b also shows the 2.0-in. contours for both the 24-h
accumulated 6-h bias-corrected QPFs (black) and the corre-
sponding 24-h analyzed QPE accumulation (magenta). The
6-h raw QPFs do not accumulate in excess of 2.0 in.; hence,
there is no heavy black 2.0-in. contour in Fig. 6a. In fact, it is
easily seen that all four 6-h raw QPFs in Fig. 6a are under
biased because the green, blue, red, and brown contours in
Fig. 6b have expanded after the bias correction. In Fig. 6b, the
area enclosed by the thick black contour (QPF $ 2.0 in.) is
noticeably larger than the areas enclosed by the thick
magenta contours (QPE $ 2.0 in.). Indeed, the computed fre-
quency bias for the 2.0-in. threshold in Fig. 6b is 1.36; while,
the frequency bias for the 2.0-in. threshold in Fig. 6a is zero.
Clearly, the accumulation of the bias-corrected 6-h QPFs has
led to an over biased 24-h accumulation. It should be noted,
the case study presented here occurred outside of the JJA
2019 period used for the analysis in Fig. 2. However, the
results for JJA 2020 (not shown) were nearly identical to
those for JJA 2019.

The results for the accumulation experiment presented, dis-
cussed, and analyzed above clearly show that bias-corrected
6-h QPFs cannot be expected to sum to 24-h or other interval
accumulations that will retain the same degree of bias correc-
tion. Bias correction is not preserved in the accumulation pro-
cess due to the adverse influences of placement error. The
latter is especially true in the case of ensemble means for
which placement errors and underforecasting of amounts ulti-
mately lead to overbias for the corrected 24-h QPF at higher
thresholds. In practical terms, WPC has observed that when
QM is used to bias correct 6-h ensemble mean QPFs, the
accumulation of those grids may produce a significantly over-
biased forecast. By significant, we mean the accumulation is
higher than any individual model solution and also extreme
compared to climatology. The effect is most likely to occur in
the medium range (days 4–7) when there are major timing dif-
ferences among the individual members in the ensemble
mean. The overbias occurs because the bias-corrected 6-h
ensemble mean QPFs do not progress in a synoptically realis-
tic manner and instead repeatedly accumulate precipitation
over the same geographic area. The results of the accumula-
tion experiment motivate consideration of another method,
the disaggregation method.

4. The disaggregation experiment

The disaggregation method cannot be a simple reversal of
the accumulation method. Indeed, one may be well advised to
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momentarily forget the preceding section to achieve the
proper mindset for this discussion. The purpose of the disag-
gregation experiment is to assess the bias and skill of 6-h
QPFs created by splitting perfectly bias-corrected 24-h accu-
mulations into constituent 6-h accumulations. For the disag-
gregation experiment, the following algorithm is applied to a
set of raw, biased 6-h QPFs:

1) Accumulate four biased (raw) 6-h QPFs into a 24-h QPF
on the 20-km grid (Fig. 1).

2) Use the corresponding 24-h QPE to perfectly bias correct
the 24-h QPF by applying SDQM on the 20-km grid.

3) Disaggregate the perfectly bias-corrected 24-h QPF into a
new set of 6-h QPFs using the raw 6-h QPFs in the formu-
lation described below.

FIG. 4. (a)–(f) The 6- and 24-h continuous accumulations (ordinate; in.) as a function of position (x axis; arbitrary
distance units) on a one-dimensional spatial domain. The panels are as labeled above in bold titles. The first 6-h accu-
mulation is in black, the second in red, the third in blue, the fourth in green, in (a), (c), and (e) where dashed vertical
line segments indicate placement of maximums. The 24-h accumulation is in black in (b), (d), and (f). See text for
more details.
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4) Verify both the original raw 6-h QPFs and the disaggregated
6-h QPFs to assess changes in frequency bias and GSS.

The disaggregation formulation applied in step 3 above
redistributes the perfectly bias-corrected 24-h QPF among the

contributing 6-h QPF intervals in proportion to the raw 6-h
QPFs at each point on the domain according to the following
equation:

qbc06 5 qbc24
q06
q24

( )
, (1)

where q06 is a raw 6-h QPF, q24 is the raw 24-h accumulated
QPF, qbc24 is the perfectly bias-corrected 24-h QPF, and qbc06 is
the bias-corrected 6-h QPF corresponding to q06. The disag-
gregation is possible only where q24 is greater than zero.
As an example, in arbitrary units of inches, if q24 5 1.00 and
q06 5 0.50, and the bias-corrected 24-h QPF is qbc24 5 1:20,
then the disaggregated bias-corrected 6-h QPF is qbc06 5 0:60.

The disaggregation described by (1) was studied by
Krzysztofowicz and Pomroy (1997). The quantity in paren-
theses on the rhs of (1) is the disaggregation fraction for
any one of four 6-h subinterval accumulations within the
24-h interval. In a statistical analysis of observed precipita-
tion data, Krzysztofowicz and Pomroy (1997) showed that
given a forecast of the timing of precipitation within an
interval of time, the forecast of the interval total and the
subinterval disaggregation fractions can be made indepen-
dently conditional on the timing. In this case, the timing of
the precipitation within the 24-h interval is determined by
the raw model forecasts. The bias-corrected 24-h total
serves as the interval total, and the disaggregation fractions
are directly forecast by the model.

The disaggregation experiment was carried out for both
the ECMWF deterministic QPFs and the ECENS mean QPFs

FIG. 5. Frequency bias (ordinate) as a function of threshold
(abscissa; in.) for the verification of the raw 24-h QPF in Fig. 4b
against the 24-h QPE in Fig. 4d (red curve) and for the verification
of the bias-corrected 24-h QPF in Fig. 4f against the 24-h QPE
(blue curve).

FIG. 6. Example case study for the accumulation experiment using the 120-h forecast projection from the ECENS
initialized at 1200 UTC 4 Jun 2020. (a) The four raw 6-h ECENS QPFs comprising a 24-h period ending at 1200 UTC
9 Jun 2020, the valid time for the 120-h forecast. Only the 0.50-in. contours for each 6-h interval are shown. The first
6-h contour is green, the second is blue, the third is red, and the last is brown. (b) The raw 6-h QPFs are bias corrected
individually, resulting in corresponding color-coded contours. The thick black contour in (b) is the 2.00-in. contour for
the 24-h accumulated bias-corrected 6-h QPFs. The thick magenta contour in (b) is the verifying 2.00-in. contour for
the 24-h accumulated analyzed 6-h QPEs. The raw 6-h QPFs on the left do not accumulate to 2.00 in.
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over the same three 24-h periods described for the accumulation
experiment. These are 24-h periods ending at the 48-, 120-, and
144-h projection times from the 1200 UTC initial cycle time.
Here again, results for the JJA 2019 and DJF 2019–2020 seasons
are shown; not shown are results for fall and spring, which as
before showed a mix of the JJA and DJF results. As with the
accumulation experiment, it is sufficient to discuss in detail only
the 120-h projection time since the same general pattern of the
graphical results occurs for all three projection times studied. In
the accumulation experiment, 6-h QPFs were bias corrected and
24-h QPFs were verified; in this disaggregation experiment, the
24-h QPF is bias corrected and the disaggregated 6-h QPFs are
verified. The contingency tables for the four 6-h QPFs compris-
ing the 24-h period are combined over the JJA or DJF

verification periods in order to compute the frequency bias and
GSS values.

Figure 7a shows verification results for the disaggregation
method applied to the deterministic ECMWF QPF during the
JJA 2019 season. The overbias at the lowest 0.01-in. threshold
is corrected to a significantly lower value, but the near unit
bias at the 0.10-in. threshold is increased to a slightly but sta-
tistically significant higher value. Otherwise, the underbias at
most higher thresholds is corrected to statistically significant
higher values, but not unit values, with the exception that the
change in bias is not significant at the 3-in. threshold. At all
thresholds except the lowest and highest, the GSS for the 6-h
disaggregated QPFs is slightly, but significantly, improved
compared to the GSS for the raw 6-h QPFs. Figure 7b shows

FIG. 7. JJA 2019 verification combined results for the disaggregated 6-h QPFs covering the 24-h interval ending at
the 120-h projection time from (a) the deterministic ECMWF and (b) the ECENS mean. The first pair of red and blue
color filled bars at each abscissa point compares the biases (left axis) for the original raw 6-h QPFs vs the 6-h QPFs dis-
aggregated from a bias-corrected 24-h accumulation. The second pair of orange and green color-filled bars shows the
respective GSS (right axis) comparison. The graphical objects and labels are as described for Fig. 2.
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verification results for the disaggregation method applied to
the ECENS mean QPF during the JJA 2019 season. As in
Fig. 7a, the overbiased 0.01-in. threshold is corrected to a sig-
nificantly lower, but still overbiased, value. The near unit bias
at the 0.10-in. threshold is raised significantly to an overbiased
value. The ECENS mean QPF is noticeably underbiased at
the higher thresholds due to the smearing effect in averaging
over members having different timings (and possibly place-
ments) of the 6-h QPF amounts. These underbiases at higher
thresholds are significantly improved for the disaggregated
6-h QPFs compared to the raw 6-h QPFs, but unit values are
not achieved. In Fig. 7b, the disaggregated 6-h QPFs generally
have significantly higher GSS values, except at the 0.10-in.
threshold where both frequency bias and GSS are significantly
degraded.

Verification outcomes for the DJF 2019/20 season are
shown in Fig. 8. The frequency bias of the deterministic
ECMWF 6-h QPFs is improved by the disaggregation method

at all thresholds in Fig. 8a, except at the 0.50- and 3-in. thresh-
olds where an underbias is made slightly, but not significantly
worse. Not all of the frequency bias improvements are statisti-
cally significant, but the changes generally place the frequency
bias within the 0.8 and 1.2 range. The GSS is improved at all
but the highest threshold in Fig. 8a, but the GSS improve-
ments are not statistically significant for thresholds exceeding
0.10-in. Figure 8b presents results for the disaggregation
experiment applied to the ECENS mean 6-h QPFs. In Fig. 8b,
all frequency bias changes are statistically significant and
closer to unity, but near unit values are not obtained at
thresholds exceeding 0.25 in. For thresholds up to and includ-
ing 2.0 in., the GSS improved for the disaggregate 6-h QPFs
compared to the original, but not all changes were statistically
significant. As in Fig. 8a, the highest 3.0-in. threshold is under-
populated and not informative in this case.

Comparing the GSS values of the raw original 6-h QPFs at
the thresholds above 0.25-in. between Figs. 8a and 8b, it is

FIG. 8. As in Fig. 7, but for DJF 2019/20 verification results.
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reasonable to conclude that the raw ECMWF deterministic
6-h QPFs have better placement or timing of QPF compared
to the ECENS mean 6-h QPFs. The same can be said of Fig. 7,
but with lower GSS values. Since bias can be perfect in the
presence of placement error, the better GSS values at higher
thresholds in Figs. 7a and 8a indicate better timing of 6-h QPF
in the deterministic ECMWF QPFs versus the ECENS mean
QPFs, because the ECENS members often disagree on the
timing of events by the 120-h projection time. With reference

to (1), better timing of the raw 6-h QPFs (q06) will give better
results for the frequency bias and also the GSS of the cor-
rected 6-h QPFs (qbc06). This is because (1) will place the 6-h
accumulations proportionately in the correct 6-h intervals.

To provide some insight into the results described above,
idealized analytic functions on a spatial domain (x) are used
to represent raw 6-h QPFs and QPEs for a 24-h period, allow-
ing the computation of disaggregated 6-h QPFs as shown in
Fig. 9. The construction of these examples is similar to that

FIG. 9. As in Fig. 4, but for (e) the 6-h disaggregated QPFs and (f) the 24-h perfectly bias-corrected 24-h QPF.
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done for the accumulation experiment (Figs. 4 and 5). The
perfectly bias-corrected 24-h QPF shown in Fig. 9f is created
by quantile mapping of the raw 24-h QPF in Fig. 9b to the fre-
quency distribution of the 24-h QPE shown in Fig. 9d. This
perfectly bias-corrected 24-h QPF is disaggregated using the
raw 6-h QPFs shown in Fig. 9a, yielding the four disaggre-
gated 6-h QPFs shown in Fig. 9e. Both sets of the four 6-h
QPFs, the raw QPFs in Fig. 9a and the disaggregated 6-h
QPFs in Fig. 9e, are verified against the corresponding
6-h QPEs in Fig. 9c. The verification involves creating 2 3 2
contingency tables for multiple thresholds, allowing the dis-
play of frequency bias versus threshold for both the raw and
disaggregated 6-h QPFs shown in Fig. 10. The relationship of
the two bias graphs in Fig. 10 is similar to what is seen for
actual data in Figs. 7 and 8: overbias at the lower thresholds is
corrected, but not perfectly, to lower values, whereas, under-
bias at the higher thresholds is corrected toward higher val-
ues, but not perfectly.

Like the accumulation method, the disaggregation method
cannot produce a set of 6-h QPFs that sum to a 24-h QPF so
that both the 6- and 24-h QPFs have the same degree of bias
correction. Unlike the accumulation method, the disaggrega-
tion approach behaves more consistently whether it is applied
to a deterministic QPF or an ensemble mean QPF in that
large inflations of bias beyond unity are not typical for the dis-
aggregated QPFs.

5. Summary and conclusions

Two methods for bias correcting QPFs to achieve some degree
of bias correction for an accumulation interval and its constituent
subinterval accumulations have been described and analyzed.
For the accumulation method, subinterval accumulations are bias

corrected with the hope that the interval accumulation is also
bias corrected to the same degree. For the disaggregation
method, the interval accumulation is bias corrected, and the sub-
interval accumulations are recomputed in proportion to the raw
subinterval accumulations with the hope that the bias correction
is conveyed to the subinterval accumulations. Since the retro-
spective experiments used to test these two methods allowed per-
fect bias correction on a spatial domain, it could easily be
determined the degree to which either of the two methods
accomplished the twin goals of consistent (i.e., perfect) bias cor-
rection for both the subinterval QPFs and the interval QPF. Nei-
ther method perfectly preserved the original bias correction but
both did improve the frequency bias of the resulting forecasts
compared to the original QPFs. The considerations and trade-
offs for each method are reiterated below.

The inflation of bias at higher thresholds that may occur
when using the accumulation method (e.g., Fig. 2b) might be
taken as a counterpoint to argue in favor of the disaggregation
method. However, the perfect bias correction used in the
experiment cannot be applied in practice, and any realistic
real-time bias correction would likely be unable to boost
underbias to unity at higher thresholds. Therefore, an infla-
tion of bias at higher thresholds may be beneficial. The disag-
gregation method might also be indicated for forecast systems
that produce well placed and timed subinterval accumulations
characterized primarily by magnitude errors, but there is no
clear outcome from the experiments to declare one method
superior to the other. If it is required that subinterval accumu-
lations sum exactly to the interval value and that both the sub-
interval and interval accumulations benefit from some degree
of bias correction, then the choice of method must hinge on
whether it is most important for the subintervals to have
direct bias correction or the longer interval to have direct bias
correction. If the subintervals are more important, then the
accumulation method is chosen. If the longer accumulation
interval is more important, then the disaggregation method
is selected. Iterative processing, bouncing back and forth
between the two algorithms, was beyond the scope of this
work.

It should be noted, the hydroclimatic community has devel-
oped very advanced statistical methods of disaggregating pre-
cipitation accumulations to subintervals compared to the
methodology used by this study (e.g., Bárdossy and Pegram
2016). Such methods are important to hydrological applica-
tions such as relating streamflow conditions to the spatial and
temporal distribution of precipitation over a catchment.
Papalexiou et al. (2018) provide a history of the hydroclimatic
development of approaches to disaggregation, propose a new
method, and apply their method to disaggregate monthly
observed precipitation to hourly amounts and climate model

FIG. 10. Frequency bias (ordinate) as a function of threshold
(abscissa; in.) for the verification of the raw 6-h QPFs in Fig. 9a
against the 6-h QPEs in Fig. 9c (red curve) and for the verification
of the disaggregation bias-corrected 6-h QPFs in Fig. 9e against the
6-h QPEs (blue curve).

TABLE A1. Synthetic raw QPF/QPE values on a 12-point
spatial domain representing forecast and corresponding analyzed
values.

0.07/0.11 0.16/0.21 0.39/0.51 0.54/0.68
0.19 0.95 0.35/0.81 0.63/0.52 0.75/0.28
0.24/0.18 0.28/0.25 0.48/0.58 0.52/0.44
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monthly totals to daily values. Poschlod et al. (2018) compare
a statistical method of disaggregation to a method using a
numerical prediction model to go from daily to hourly precipi-
tation accumulations. A detailed examination of the choice of
disaggregation methodology and the effect on results was
beyond the scope of this study but may be an area of future
research.
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APPENDIX

Spatial Domain Quantile Mapping (SDQM)

The perfect bias correction is carried out for each individ-
ual QPF field, a horizontal array of QPF values at regularly
spaced point locations for a given valid date and time. For
each such QPF field there exists a QPE field of analyzed
observed values at the same points. For this demonstration,
3 3 4 arrays of synthetic QPF and QPE data (inch units)
are created as shown in Table A1. The QPF values are

under biased. The SDQM process will correct the bias as
described below with reference to Table A2.

The SDQM method proceeds from left to right in Table A2.
Columns 1 and 2 just list the raw QPFs and the corresponding
QPEs in “reading” order from upper left to lower right in
Table A1. First, both the raw QPFs and the corresponding
QPE values are sorted from lowest to highest values as shown
in columns 3 and 4 of Table A2. Next, the mapping is done as
follows: For each raw QPF value in column 1, find its position
in column 3, and then populate column 5 with the correspond-
ing QPE value from column 4. This procedure applied to each
value in column 1 fills column 5 with perfectly bias-corrected
QPFs. The last column in Table A2 repeats column 2 to show
in juxtaposition the QPE values corresponding to the bias-
corrected QPF values. The last two columns of Table A2 are
used to populate the horizontal array of bias-corrected QPF
values and QPE values as shown in Table A3, which is the
bias-corrected version of Table A1. As an example, consider
the raw QPF value 0.63 in column 1 of Table A2. In the sorted
QPF column, 0.63 appears in the penultimate row next to the
sorted QPE value 0.81 in column 4. Thus, 0.81 replaces 0.63 in
the quantile mapped QPFs found in column 5.

Table A4 is a 2 3 2 contingency table (including mar-
ginal totals) verifying the raw QPFs in Table A1 against the
corresponding analyzed QPE for the threshold of 0.50 in.
For convenience and simplicity, here the critical success
index (CSI, a.k.a. threat score) is used to assess the perfor-
mance. In terms of the parameters in Table 1 of the main
text, the CSI 5 a/(a 1 b 1 c). Computed from Table A4,
the frequency bias for the raw QPFs is 4/6 5 2/3. Thus, the
raw QPFs are under biased. The CSI is 2/8 5 1=4.

If the bias-corrected QPFs in Table A3 are verified simi-
larly, the resulting 2 3 2 contingency table with marginal
totals is Table A5. After the SDQM bias correction, the
frequency bias is unity (6/6 5 1) as expected. The CSI has
improved to the value 4/8 5 1=2. When multiple tables of
counts are additively combined, the property of unit fre-
quency bias is preserved if each contributing table has a
unit frequency bias like Table A5.

There are two additional points of interest to note. First,
the SDQM bias correction cannot do much to correct the

TABLE A2. Tabulated values demonstrating the SDQM
process applied to the raw QPF and analyzed QPE values in
Table A1. See text for details.

QPF
Analyzed

QPE
Sorted
QPF

Sorted
QPE

SDQM’ed
QPF

Analyzed
QPE

0.07 0.11 0.07 0.11 0.11 0.11
0.16 0.21 0.16 0.18 0.18 0.21
0.39 0.51 0.19 0.21 0.51 0.51
0.54 0.68 0.24 0.25 0.68 0.68
0.19 0.95 0.28 0.28 0.21 0.95
0.35 0.81 0.35 0.44 0.44 0.81
0.63 0.52 0.39 0.51 0.81 0.52
0.75 0.28 0.48 0.52 0.95 0.28
0.24 0.18 0.52 0.58 0.25 0.18
0.28 0.25 0.54 0.68 0.28 0.25
0.48 0.58 0.63 0.81 0.52 0.58
0.52 0.44 0.75 0.95 0.58 0.44

TABLE A4. A 2 3 2 contingency table for the verification of the
raw QPFs in Table A1 for the 0.50 threshold.

Outcomes QPE $ 0.50 QPE , 0.50 Total count

QPF $ 0.50 2 2 4
QPF , 0.50 4 4 8
Total count 6 6 12

TABLE A3. Synthetic bias-corrected QPF/QPE values on a
12-point spatial domain representing forecast and corresponding
analyzed values.

0.11/0.11 0.18/0.21 0.51/0.51 0.68/0.68
0.21/0.95 0.44/0.81 0.81/0.52 0.95/0.28
0.25/ 0.18 0.28/0.25 0.52/0.58 0.58/0.44

TABLE A5. A 2 3 2 contingency table for the verification of the
bias-corrected QPFs in Table A3 for the 0.50 threshold.

Outcomes QPE $ 0.50 QPE , 0.50 Total count

QPF $ 0.50 4 2 6
QPF , 0.50 2 4 6
Total count 6 6 12
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placement error existing in the middle row of Table A1.
The QPFs are heavy on the right (east) whereas the QPEs
are heavy on the left (west). This condition still exists,
although ameliorated somewhat, in Table A3. The second
point has to do with subsetting the domain. The SDQM
bias correction holds for the domain as a whole but not
necessarily for a subset of the domain. For example, con-
sider the right (eastern) half of Table A3 having six data
points. The 2 3 2 contingency table for this subset is given
in Table A6. The frequency bias for the subset is 6/4 5 3/2,
indicating over bias. Although no subsetting was done in
this work, it is important to note that subsets must be bias
corrected individually.
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